

NTP Research Concept - Alkylaniline

Scott S. Auerbach Ph.D.
Study Scientist
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting July 23 -24, 2009

Nomination

- 2-ethylaniline (2-EA), 3-ethylaniline (3-EA), and 3,5-dimethylaniline (3,5-DMA) were nominated by NIEHS for toxicological characterization
- Justification
 - ubiquitous potential exposure scenarios
 - limited availability of published toxicological data for this subclass of alkyl-substituted anilines
 - structural similarities to the known animal carcinogens 2,6-xylidine (2,6-DMA), and o-toluidine (2-MA)

Monomethyl substituted

Dimethyl substituted

3,4-dimethylaniline 3,5-dimethylaniline

Monoethyl substituted

- * Nominated chemical
- * Rodent carcinogen
- * Associated with human bladder cancer

Others with HPV status

Uses

Reactants and chemical intermediates in the production of:

- Antioxidants
- Antiozanants
- Azo dyes
- Curing agents
- Detergents
- Gasoline additives
- Pesticides
- Pharmaceuticals
- Special lacquers
- Wood preservatives

Human exposure

- Biomonitoring studies (Hemoglobin (Hb) adducts) have indicated widespread human exposure to a variety of alkylanilines
 - · Hb adduct levels of certain alkylanilines were associated with bladder cancer
- Likely primary source of widespread exposure
 - · mainstream and sidestream cigarette smoke
- Occupational exposure
 - · Possible inhalation and dermal exposure during production and use
- Other potential sources
 - drugs
 - · metabolism of lidocaine
 - · pesticides
 - · biodegradation/metabolism of chloroacetanilide herbicides and phenylamide fungicides
 - food
 - metabolism of xylazine

Background

- Toxicity: methemoglobinemia; irritant
- Carcinogenicity of structurally related alkylanilines
 - 2-MA (NTP study)
 - Mouse: liver
 - Rat: Mammary gland, subcutaneous tissue and bladder
 - IARC: Group 2A = probably carcinogenic to humans
 - 2,6-DMA (NTP study)
 - · Mouse: no study
 - · Rat: Nasal cavity, subcutaneous tissue and liver
 - IARC: Group 2B = possibly carcinogenic to humans

Background

- Genotoxicity of the alkylanilines
 - Generally negative in Ames mutagenicity studies
 - Generally positive for clastogenicity
 - Some form DNA adducts in vivo

Review: Justification for class study

- Widespread, low dose exposure to an array of alkylanilines, a fraction of which are associated with cancer in the general population
- Likely similar metabolism and bioactivation
- Likely polymorphic metabolism / bioactivation that is genetically determined
- Likely similar carcinogenic mode of action DNA adduction, genotoxicity

Proposed Approach

- Class study (14 alkylanilines) centered on mode of action
 - In vivo genotoxicity
 - DNA reactivity and mutagenicity/clastogenicity
 - Validate relationship between mode of action and carcinogenicity
 - Influence of genetic variation on genotoxicity

Why we think this approach will work- Alkenylbenzenes

Randerath, et al., Carc., 1984

Key issue: DNA reactivity

- Alkylanilines tend to be negative in Ames studies
- Alkylanilines tend to be positive in micronucleus studies
- The most sensitive metric of the genotoxic potential of the alkylanilines is DNA reactivity

Specific Aim 1a: Conduct *in vivo* DNA reactivity studies

- Evaluations:
 - DNA adduct levels in multiple tissues
 - Hemoglobin adducts for purposes of scaling to human internal dose
- Doses:
 - 2 or more equimolar doses of all 14 alkylanilines
- Species:
 - mouse (C57BL/6)

Key Issue:

$\textbf{DNA reactivity} \rightarrow \textbf{Permanent genetic change}$

- DNA reactivity does not always translate to mutagenicity / clastogenicity
- Establish relationship between DNA reactivity and permanent genetic change produced by the alkylanilines

Specific Aim 1b: Conduct *in vivo* mutagenesis / clastogenesis studies

- Evaluations:
 - Performed in parallel with DNA adduct studies
 - Pig-A assay
 - Comet assay of select tissues
 - Erythrocyte micronuclei

Key Issue:

$\textbf{Genotoxicity} \rightarrow \textbf{Carcinogenicity}$

 Need to establish the relationship between genotoxic potency and carcinogenic activity

Specific Aim 2: Conduct transgenic mouse bioassay

- Perform short-term carcinogenicity bioassays
- Xpc-/-/p53+/- knockout mice (C57BL/6 background)
 - sensitive to arylamine induced carcinogenic transformation in the urinary bladder and liver
- 4 or more of the 14 alkylanilines will be selected for study
 - 1 known carcinogen
 - 1 high potency genotoxin
 - 1 intermediate potency
 - 1 low potency

Key Issue: Genetic susceptibility to alkylaniline genotoxicity

- Genetic variation in Phase I and Phase II enzymes confer differential carcinogenic risk associated with arylamine exposure
- Alkylanilines are anticipated to undergo polymorphic bioactivation

Specific Aim 3: Conduct *in vitro* DNA adduct studies in hepatocytes from multiple inbred mouse strains

- Cultured hepatocytes from a subset of mice strains
 - Strains (including C57BL/6) will be selected based on genetic diversity at loci known to influence arylamine metabolism (N-acetyl transferase, CYP1A, glutathione -S-transferase)
- Evaluations:
 - · DNA adduct formation
 - DNA damage using the Comet assay

Significance and Anticipated Outcome

- The proposed research program will determine, relative to known rodent carcinogens:
 - the genotoxic and mutagenic hazard of a collection of largely untested alkylanilines with widespread human exposure
 - the carcinogenic activity of a select subset of alkylanilines
 - the influence of genetic variation on alkylaniline genotoxicity
- Provide a framework for more efficient evaluation of the carcinogenic hazard associated with arylamine exposure
- Hb adducts will provide a metric of internal dosimetry for more accurate scaling of carcinogenic hazard to humans

Questions?

